The Dark Side of Electric Lights

Forcing remote sensing into a hostile environment

*Disclaimer: Use of trade names does not imply endorsement

Remote Sensing

- Anything you can use without touching the plant
 - Cameras
 - Spectrometers
 - Thermal sensors
 - Radar/Sonar
 - Microwaves
 - Eyes

Shortwave Remote Sensing

Based on reflectance

Original Paradigm

- Measuring plants outside
 - Ambient light
 - Soil of varying brightness
 - Difference in reflectance between plants and soil identify plant quantity or color

Outside vs. Inside

- Outside
 - Sunlight
 - ~Incandescent
- Greenhouses and growth chambers
 - Fluorescent lamps
 - High Pressure Sodium lamps

Sunlight

Incoming radiation from ~280 to 2500 nm

Some absorption by atmospheric gases and

particles

Direct or diffuse

No cycle

Clouds...

Incandescent

- Terribly inefficient
- Great for remote sensing applications
 - No cycle
 - Smooth spectrum

Sensor Systems

- Incoming light
- Prism

- 3 Narrow band
 - High spectral resolution (<20nm)</p>
 - Makes one spot measurement (e.g. spectrometer)
- Broad band
 - Low spectral resolution
 - Can often make an array of measurements (e.g. digital camera)

Array of silicon detectors – wavelength specific

Array of light-sensitive silicon pixels

Bayer Filter

Fraunhofer Lines

- Lines of atmospheric absorption of sunlight
- **3** Over 1000 lines

Reflectance

Quantity of light reflected

Quantity of light hitting surface

Direct measurement of reflected sunlight - full of noise

These big peaks and valleys are related to Fraunhofer and water absorption bands, rather than plant color

Reflectance

Quantity of light reflected

Quantity of light hitting surface

Easier to Analyze

- Peaks and valleys are related to plant color
- Calibration simply requires white reference

Normalized Difference Vegetation Index (NDVI)

③(NIR-R)/(NIR+R)

Outdoor Solutions

- Soil color Soil-adjusted vegetation indices
- Clouds active spectrometry (e.g. GreenSeeker and Crop Circle sensors)
 - Use modulation to decrease solar effects

Controlled Environment Monitoring with Remote Sensing

- Electrical lights vs. sunlight
 - Emittance and frequency
- Background effects
- Spectrometer solutions
- Camera solutions

Fluorescent and High Pressure Sodium

- Large phosphor emittance spikes
- Very little NIR radiation (fluorescent)
- NIR is in one spike (HPS)
- High-frequency ballasts

Electric Lighting Systems

- Greenhouse
 - Sunlight + electric lights
- Growth Chamber
 - Only electric lights

Fluorescent and HPS

- High efficiency
- Light emittance spikes
- High frequency ballasts
 - Increase efficiency
 - Personal communication with makers of GreenSeeker: High frequency fluorescent lights can affect NDVI measurements

Greenhouse

Greenhouse

Growth Chamber

- No sunlight input
- Little NIR at most wavelengths with fluorescent and HPS lamps
- Low signal-to-noise ratio in NIR for most wavelengths
 - Issue of saturation in the visible

Adapting the System

- 3 What can be done?
 - Broad spectral measurements
 - Reflectance, transmittance, etc. in general terms
- What to be careful of
 - Spikes in narrow band spectral measurements
 - Near -infrared measurements
 - Strange backgrounds

apogeeinstruments.com

Background Effects

- Outside Soil
 - Different brightness characteristics
 - Spectrally flat
 - Vegetation indices (SAVI, etc.) correct for soil
- Inside
 - Every background will have a different effect

Potential Solutions - Background

- Mathematically eliminate background (if you know exactly what the background reflectance is
- Use derivatives (if you have wavelengths you can be confident of)
- Use soil adjusted indices (if your background is spectrally flat)
- Ignore (at your own rick)

Potential Solutions - Spectrometer

- Turn off electric lights (watch out for light contamination from adjacent greenhouses!!!)
- Shade plants during measurement
- Select parts of the reflectance spectrum that are less affected by phosphor spikes
- Active spectrometer watch out for interference
- 3 Ignore (at your own rick)

Potential Solutions - Camera

- Calibration panel, such as a gray card
 - Set white balance based on gray card
 - Be careful of changing light characteristics
- Filters
 - Still need to have reference
- Electric light setting on camera
 - Still need to have reference

Potential Solutions - Camera

- Measure ground cover fraction instead of using spectral index (Klassen et al. 2003)
- Relative spectral differences allow discrimination

Questions?

Early remote sensing